Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.15.435551

ABSTRACT

The papain-like protease (PLpro) of SARS-CoV-2 is a validated antiviral drug target. PLpro is involved in the cleavage of viral polyproteins and antagonizing host innate immune response through its deubiquitinating and deISG15ylating activities, rendering it a high profile antiviral drug target. Through a FRET-based high-throughput screening, several hits were identified as PLpro inhibitors with IC50 values at the single-digit micromolar range. Subsequent lead optimization led to potent inhibitors with IC50 values ranging from 0.56 to 0.90 {micro}M. To help prioritize lead compounds for the cellular antiviral assay against SARS-CoV-2, we developed the cell-based FlipGFP assay that is suitable for quantifying the intracellular enzymatic inhibition potency of PLpro inhibitors in the BSL-2 setting. Two compounds selected from the FlipGFP-PLpro assay, Jun9-53-2 and Jun9-72-2, inhibited SARS-CoV-2 replication in Caco-2 hACE2 cells with EC50 values of 8.89 and 8.32 {micro}M, respectively, which were 3-fold more potent than GRL0617 (EC50 = 25.1 {micro}M). The X-ray crystal structures of PLpro in complex with GRL0617 showed that binding of GRL0617 to SARS-CoV-2 induced a conformational change in the BL2 loop to the more closed conformation. Overall, the PLpro inhibitors identified in this study represent promising starting points for further development as SARS-CoV-2 antivirals, and FlipGFP-PLpro assay might be a suitable surrogate for screening PLpro inhibitors in the BSL-2 setting.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.02.429311

ABSTRACT

Cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain (RBD) of the viral Spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). As such, RBD has become the major target for vaccine development, while RBD-specific antibodies are pursued as therapeutics. Here, we report the development and characterization of SARS-CoV-2 RBD-specific VHH/nanobody (Nb) from immunized alpacas. Seven RBD-specific Nbs with high stability were identified using phage display. They bind to SARS-CoV-2 RBD with affinity KD ranging from 2.6 to 113 nM, and six of them can block RBD-ACE2 interaction. The fusion of the Nbs with IgG1 Fc resulted in homodimers with greatly improved RBD-binding affinities (KD ranging from 72.7 pM to 4.5 nM) and nanomolar RBD-ACE2 blocking abilities. Furthermore, fusion of two Nbs with non-overlapping epitopes resulted in hetero-bivalent Nbs, namely aRBD-2-5 and aRBD-2-7, with significantly higher RBD binding affinities (KD of 59.2 pM and 0.25 nM) and greatly enhanced SARS-CoV-2 neutralizing potency. The 50% neutralization dose (ND50) of aRBD-2-5 and aRBD-2-7 was 1.22 ng/mL ([~]0.043 nM) and 3.18 ng/mL ([~]0.111 nM), respectively. These high-affinity SARS-CoV-2 blocking Nbs could be further developed into therapeutics as well as diagnosis reagents for COVID-19. ImportanceTo date, SARS-CoV-2 has caused tremendous loss of human life and economic output worldwide. Although a few COVID-19 vaccines have been approved in several countries, the development of effective therapeutics including SARS-CoV-2 targeting antibodies remains critical. Due to their small size (13-15 kDa), highly solubility and stability, Nbs are particularly well suited for pulmonary delivery and more amenable to engineer into multi-valent formats, compared to the conventional antibody. Here, we report a serial of new anti-SARS-CoV-2 Nbs isolated from immunized alpaca and two engineered hetero-bivalent Nbs. These potent neutralizing Nbs showed promise as potential therapeutics against COVID-19.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.19.423537

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is a validated antiviral drug target. Several Mpro inhibitors have been reported with potent enzymatic inhibition and cellular antiviral activity, including GC376, boceprevir, calpain inhibitors II and XII, each containing a reactive warhead that covalently modifies the catalytic Cys145. In this study, we report an expedited drug discovery approach by coupling structure-based design and Ugi four-component (Ugi-4CR) reaction methodology to the design of non-covalent Mpro inhibitors. The most potent compound 23R had cellular antiviral activity similar to covalent inhibitors such as GC376. Our designs were guided by overlaying the structure of SARS-CoV Mpro + ML188 (R), a non-covalent inhibitor derived from Ug-4CR, with the X-ray crystal structures of SARS-CoV-2 Mpro + calpain inhibitor XII/GC376/UAWJ247. Binding site analysis suggests a strategy of extending the P2 and P3 substitutions in ML188 (R) to achieve optimal shape complementary with SARS-CoV-2 Mpro. Lead optimization led to the discovery of 23R, which inhibits SARS-CoV-2 Mpro and SARS-CoV-2 viral replication with an IC50 of 0.31 microM and EC50 of 1.27 microM, respectively. The binding and specificity of 23R to SARS-CoV-2 Mpro were confirmed in a thermal shift assay and native mass spectrometry assay. The co-crystal structure of SARS-CoV-2 Mpro with 23R revealed the P2 biphenyl fits snuggly into the S2 pocket and the benzyl group in the -methylbenzyl faces towards the core of the enzyme, occupying a previously unexplored binding site located in between the S2 and S4 pockets. Overall, this study revealed the most potent non-covalent SARS-CoV-2 Mpro inhibitors reported to date and a novel binding pocket that can be explored for Mpro inhibitor design.


Subject(s)
Severe Acute Respiratory Syndrome
4.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-86169.v1

ABSTRACT

COVID-19 pandemic is the third zoonotic coronavirus (CoV) outbreak of the century after severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) since 2012. Treatment options for CoVs are largely lacking. Here, we show that clofazimine, an anti-leprosy drug with a favorable safety and pharmacokinetics profile, possesses pan-coronaviral inhibitory activity, and can antagonize SARS-CoV-2 replication in multiple in vitro systems, including the human embryonic stem cell-derived cardiomyocytes and ex vivo lung cultures. The FDA-approved molecule was found to inhibit multiple steps of viral replication, suggesting multiple underlying antiviral mechanisms. In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and fecal viral shedding, and also prevented cytokine storm associated with viral infection. Additionally, clofazimine exhibited synergy when administered with remdesivir. Since clofazimine is orally bioavailable and has a comparatively low manufacturing cost, it is an attractive clinical candidate for outpatient treatment and remdesivir-based combinatorial therapy for hospitalized COVID-19 patients, particularly in developing countries. Taken together, our data provide evidence that clofazimine may have a role in the control of the current pandemic SARS-CoV-2, endemic MERS-CoV in the Middle East, and, possibly most importantly, emerging CoVs of the future.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Leprosy , Virus Diseases , COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.27.223727

ABSTRACT

The main protease (Mpro) of SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic, is a key antiviral drug target. While most SARS-CoV-2 Mpro inhibitors have a {gamma}-lactam glutamine surrogate at the P1 position, we recently discovered several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II/XII, which are also active against human cathepsin L, a host-protease that is important for viral entry. To determine the binding mode of these calpain inhibitors and establish a structure-activity relationship, we solved X-ray crystal structures of Mpro in complex with calpain inhibitors II and XII, and three analogues of GC-376, one of the most potent Mpro inhibitors in vitro. The structure of Mpro with calpain inhibitor II confirmed the S1 pocket of Mpro can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. Interestingly, the structure of calpain inhibitor XII revealed an unexpected, inverted binding pose where the P1 pyridine inserts in the S1 pocket and the P1 norvaline is positioned in the S1 pocket. The overall conformation is semi-helical, wrapping around the catalytic core, in contrast to the extended conformation of other peptidomimetic inhibitors. Additionally, the structures of three GC-376 analogues UAWJ246, UAWJ247, and UAWJ248 provide insight to the sidechain preference of the S1, S2, S3 and S4 pockets, and the superior cell-based activity of the aldehyde warhead compared with the -ketoamide. Taken together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of Mpro inhibitors as SARS-CoV-2 antivirals.


Subject(s)
COVID-19
6.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-25828.v1

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a threat to global public health. Prompt patient identification and quarantine is the most effective way to control its rapid transmission, which can be facilitated by early detection of viral antigens. Here we present a platform to develop and optimize the fibronectin-based affinity-enhanced antibody mimetics (monobodies) for recognizing viral antigens. Specifically, we developed monobodies targeting SARS-CoV-2 nucleocapsid (N) protein. We showed that two monobodies, NN2 and NC2, bind to N protein’s N- and C-terminal domains respectively with a Kd in nM range.The specificity of the recognition was confirmed with co-immunoprecipitation and immunofluorescence assays. Furthermore, we demonstrated that one round of in vitro maturation using mRNA display can improve the binding affinity of monobodies. Machine learning algorithms were integrated with deep sequencing data for selecting candidates that improve the detection sensitivity of N. Using this pair of monobodies, we have developed an enzyme-linked immunosorbent assay (ELISA) for viral detection. We were able to detect recombinant N at 4 pg/ml and detect N in viral culture supernatant, with no cross-reactivity with other CoV. Integrating high-dense mutagenesis, mRNA display, deep sequencing and machine learning, this platform can be applied through iterations to identify and optimize monobodies against emerging viral antigens, potentiating point-of-care detection of communicable diseases in a cost-and time-sensitive manner.Authors Yushen Du, Tian-hao Zhang, Xiangzhi Meng, Yuan Shi, and Menglong Hu contributed equally to this work.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL